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1. Introduction

For Riemann surfaces, it is known from Witten’s conjectures [2] and Kontsevich’s deriva-

tion [1] that the intersection numbers of the moduli space of curves with marked points

may be obtained from an Airy matrix model. Furthermore, higher Airy matrix models

have been shown to give the intersection numbers of the moduli space for p-spin curves [3].

Recently, a duality relation has been applied to this problem [4 – 6]. The derivation

relied on a duality between the higher p-th Airy matrix models and Gaussian matrix

models in an external matrix source at critical values of this source [7, 8] ; the intersection

numbers are then easily obtained from this dual model. When p=2, the model reduces to

Kontsevich’s model ; its dual connects to the behavior of correlation functions near the

edge of the semi-circle spectrum [9, 4].

The moduli space of p-th spin curves is described by random Hermitian matrices, the

Lie algebra of the unitary group U(N). It is of interest to extend this moduli space of spin

curves for non-orientable surfaces, both in the fields of open string theory and of quantum

chaos.

For obtaining non-orientable surfaces from standard loop-expansions of matrix models,

a first possibility would be to use real symmetric matrices. The Euler characteristics of the

moduli spaces of real algebraic curves with marked points may be obtained from the real
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symmetric matrix model [10]. However, for the intersection numbers of the moduli space

of curves with marked points, this real symmetric matrix model remains difficult to solve

when one extends Kontsevich Airy matrix model to non-orientable surfaces [11].

In this article we have chosen, instead of real symmetric matrices, to consider real

antisymmetric matrices, the Lie algebra of the SO(N) group (we assume that N is an

even integer). Let us note that the Gaussian random matrix model of the classical groups

O(N) and Sp(N) appeared earlier in the literature in the studies of the moments of the

L-functions [12] and in the study of the spectrum of excitations inside superconducting

vortices [13].

For the O(N) matrices, there is a Harish Chandra formula for the integrals over the

orthogonal group. Thanks to this integral formula, which is similar to the unitary case,

generating functions of the intersection numbers for non-orientable surfaces become calcu-

lable. We shall discuss a duality relation for the O(N) case, which is surprizingly similar

to the U(N) case ; then we compute explicit expansions for the Fourier transforms of the

correlation functions of the dual models, and obtain the intersection numbers. This study

may shed some light on the moduli space of curves on non-orientable surfaces.

2. Duality relation

Let us first state the basic duality relation which will be used in this article.

Theorem 1.
〈

k
∏

α=1

det(λα · I − X)

〉

A

=

〈

N
∏

n=1

det(an · I − Y )

〉

Λ

(2.1)

where X is 2N × 2N real antisymmetric matrix (Xt = −X ) and Y is 2k × 2k real

antisymmetric matrix ; the eigenvalues of X and Y are thus pure imaginary. A is also a

2N × 2N antisymmetric matrix, and it couples to X as an external matrix source. The

matrix Λ is 2k × 2k antisymmetric matrix, coupled to Y . We assume, without loss of

generality, that A and Λ have the canonical form:

A =















0 a1 0 0 · · ·
−a1 0 0 0 · · ·
0 0 0 a2 0

0 0 −a2 0 0

· · ·















, (2.2)

i.e.

A = a1v ⊕ · · · ⊕ aNv, v = iσ2 =

(

0 1

−1 0

)

. (2.3)

Λ is expressed also as

Λ = λ1v ⊕ · · · ⊕ λkv. (2.4)
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The characteristic polynomial det(λ · I − X) has the 2N roots (±iλ1, . . . ,±iλn). The

Gaussian averages in (2.1) are defined as

〈· · ·〉A =
1

ZA

∫

dXe
1
2
trX2+trXA

〈· · ·〉Λ =
1

ZΛ

∫

dY e
1
2
trY 2+trYΛ (2.5)

in which X is a 2N×2N real antisymmetric matrix, and Y a 2k×2k real antisymmetric ma-

trix ; the coefficients ZA and ZΛ are such that the expectation values of one is equal to one.

The derivation of Theorem 1 relies on a representation of the characteristic polynomials in

terms of integrals over Grassmann variables, as for the U(N) or U(N)/O(N) [12, 14, 15]

cases. Given the complexity of the intermediate steps of the derivation for the O(N) case,

the simplicity of the result is striking. The derivation is given in appendix A.

3. Higher Airy matrix models

From the theorem 1, we can obtain easily the higher Airy matrix models. We first consider

the simple case in which the source A is a multiple of identity: an = a. Then we write

〈

N
∏

i=1

det(an · I − Y )

〉

Λ

=
〈

[det(a · I − Y )]N
〉

Λ

=
1

ZΛ

∫

dY eNtrlog(a·I−Y )+ 1
2
trY 2+trY Λ (3.1)

Expanding the logarithmic term, and noting that the traces of odd powers of Y vanish

since Y is antisymmetric, we obtain

〈

[det(a − Y )]N
〉

Λ
=

1

ZΛ

∫

dY e2kN loga−( N
2a2 −

1
2
)trY 2− N

4a4 trY 4+···+trY Λ (3.2)

Chosing a2 = N , the coefficient of trY 2 vanishes. Then one rescales Y → N
1
4 Y , and

Λ → N− 1
4 Λ. After these rescalings, we obtain in the large N limit, the higher Airy matrix

model,

Z =

∫

dY e−
1
4
trY 4+trY Λ (3.3)

Note that higher powers of Y 2n disappear in this scaling limit since they are given by

1

nNn−1
· N 2n

4 trY 2n ∼ N−n
2
+1trY 2n (3.4)

which vanish in the large-N limit for n > 2.

By appropiate tuning of the an’s, and corresponding rescaling of Y and Λ, one may

generate similarly higher models of type

Z =

∫

dY e−
1

p+1
trY p+1+trY Λ (3.5)

– 3 –



J
H
E
P
0
7
(
2
0
0
8
)
0
5
0

where p is an odd integer. These models are similar to the generalized Kontsevich model

in the unitary case, which gives the intersection numbers of the moduli spaces of p-th spin

curves. However, the matrix Y being real and antisymmetric, the partition function Z is

very different from the unitary case and non-orientable surfaces lead to different intersection

numbers.

4. Expansion in inverse powers of lambda

The free energy F = logZ can be expanded in powers of trΛ−m as in the unitary case. This

is done through the Harish Chandra formula [16] for the integration over the orthogonal

group g = SO(2N). We may take Y and Λ in canonical form (2.1) without loss of generality:

then the Harish Chandra integral reads [16]

Theorem 2. (Harish Chandra)

∫

SO(2N)
dgetr(gY g−1Λ) = C

∑

w∈W
(detw)exp

[

2
N
∑

j=1
w(yj)λj

]

∏

1≤j<k≤N

(y2
j − y2

k)(λ
2
j − λ2

k)
(4.1)

where C = (2N − 1)!
∏2N−1

j=1 (2j − 1)!, and W is the Weyl group, which consists here of

permutations followed by reflections (yi → ±yi ; i = 1, . . . , N) with an even number of sign

changes.

In the appendix B, we give a more explicit determinantal expression for this Harish

Chandra integral for the orthogonal group SO(2N).

For the p = 3 critical model (3.5), let us compute the perturbation expansion of the

free energy F = logZ. From Th. 2, we obtain (see appendix B)

Z =

∫ k
∏

i=1

dyi

∏

(y2
i − y2

j )
∏

(λ2
i − λ2

j )
e−

1
2

P

y4
i −2

P

yiλi (4.2)

To obtain the series in powers of 1/λ, we change λi → λ3
i and make a shift yi → yi − λi

to eliminate the yiλ
3
i term. Then, the problem reduces to cubic and quartic perturbations

with a Gaussian weight. For instance, k = 2 for O(2k) case, we have from Th.2,

∫

dy1dy2
y2
1 − y2

2

λ2
1 − λ2

2

e−
1
2
(y4

1+y4
2)−2(y1λ3

1+y2λ3
2)

= 1 +
1

72

(

1

λ4
1

+
1

λ4
2

)

+
1

12

(

1

λ2
1

+
1

λ2
2

)2

+ O

(

1

λ8

)

(4.3)

where we have dropped a normalization constant. In that simple k = 2-case it is easy to

make this calculation directly without use of Th.2, and the results do agree. The coefficients
1
72 and 1

12 are universal factors independent of k. For general k, it is useful to write the
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Vandermonde product as a determinant with the y2
i , and the evaluation is straightforward.

We introduce the following parameters, similar to those of the unitary case,

tn,j = (p)
j−p−n(p+2)

2(p+1)

n−1
∏

l=0

(lp + j + 1)

k
∑

i=1

1

λpn+j+1
i

(4.4)

with here p=3. Note that the normalization of the tn,j is slightly different from the unitary

case, in which p is replaced by −p in the first factor of (4.4). However, this definition

is not approriate for the half-integer genus (non orientable surface), since the first factor

becomes irrational number. So, we define in this half-integer genus case (condition will

appear below in (4.9)) as

tn,j =
n−1
∏

l=0

(lp + j + 1)
k
∑

i=1

1

λpn+j+1
i

. (4.5)

The index ni stands for the power of the first Chern class c1. The index j is the spin index,

which takes the values j = 1, 2, . . . , p − 1.

We end up with an expansion, similar to the unitary case, but with different coefficients

logZ =
∑

〈

∏

τ
dni,ji
ni,ji

〉

∏ t
dni,ji
ni,ji

dni,ji !
(4.6)

For p = 3, the lowest orders of the O(N) model are given by

logZ =
1

72

∑ 1

λ4
i

+
1

12

(

∑ 1

λ2
i

)2

+
5

432

∑ 1

λ8
i

+
1

432

(

∑ 1

λ4
i

)2

+
1

36

(

∑ 1

λ4
i

)(

∑ 1

λ2
i

)2

− 1

108

(

∑ 1

λ2
i

)4

+ O

(

1

λ12

)

(4.7)

Note that there is no odd-power of 1/λ such as
∑ 1

λi
. This is due to the parity λi → −λi

for real antisymmetrix matrices of O(2N). From the above series, the intersection numbers
〈

∏

ni,ji
τ

dni,ji
ni,ji

〉

are obtained. In the unitary case, they are given by

〈τn1,j1 · · · τns,js〉 =
1

pg

∫

M̄g,s

s
∏

i=1

c1(Li)
niCT (j1, . . . , js) (4.8)

where c1 is the first Chern class and CT (V ) is the top Chern class [3]. In the present case,

we call the intersection numbers as the coefficients of the expansion of logZ as (4.6).

The numbers of τ corresponds to the numbers of marked points s. The indices ni, ji

are related to the genus g.

s
∑

i=1

(

ni +
1

p
ji − 1

)

=

(

3 −
(

1 − 2

p

))

(g − 1) (4.9)

The genus g is given through an expansion in powers of the inverse of the size of the matrix,

as is standard for matrix models. For this purpose, we introduce an overall factor k in the
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>>
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>>
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<<
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>>

(4) crosscapped torus

>>> >>

<<<

∧ ∧

•

•

Figure 1: Opposite lines are glued together with matching arrow.

exponent (3.5), an integral over k × k matrices. Then logZ/k may be expanded in a series

in powers of k2−2g, with genus g. For the present antisymmetric matrix Y , odd powers of

1/k are also present. (In the unitary case, only even powers appear).

The genus g is given by the Euler characteristics,

V − E + F = 2 − 2(type) (4.10)

where V , E and F are the numbers of vertices, edges and faces, respectively. For non-

orientable surfaces, the genus g is replaced by the (type): we can still use g but it takes

half-integer values. This definition coincides with that of (4.9). In figure 1, the lower order

terms 〈τ1,0〉g=1((1)torus and (2)Klein bottle),
〈

τ2
0,1

〉

g= 1
2

((3)projective plane), and 〈τ2,1〉g= 3
2

(crosscapped torus) are depicted.

For non-orientable surface , new characteristic terms are present, such as t1,0 for the

Klein bottle, in addition to the torus, and t20,1 (projective plane), t2,1 (crosscapped torus)

which did not exist in the unitary case. From (4.7), we have the intersection numbers,

〈τ1,0〉g=1 =
1

24
,
〈

τ2
0,1

〉

g= 1
2

=
1

6
, 〈τ2,1〉g= 3

2
=

1

864
,
〈

τ2
1,0

〉

g=0
=

1

24
. (4.11)

5. Evolution operators at edge singularities

We have derived the higher Airy matrix model of (3.5) from the large N limit of the char-

acteristic polynomials for the antisymmetric matrix Y , which is dual to the characteristic
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polynomial of X. The choice of the an = ac =
√

N for (3.3) corresponds to a singular point

in the spectrum of eigenvalues of X. At that critical point the density of states of X has

a singularity at the origin. For a > ac there is a gap at the origin in the spectrum (whose

support lies on the imaginary axis), and at a = ac this gap is closing. This happens also

in the unitary case for an external matrix source with eigenvalues ±a [7, 8].

An integral representation for the evolution operators U for the vertices of O(N) (N

even) may be obtained from the Fourier transform of the correlation functions. The deriva-

tions are given in appendix C. The evolution operators U(s1, . . . , sn) are defined as

U(s1, . . . , sn) =
1

N

〈

tres1Xtres2X · · · tresnX
〉

A
(5.1)

Fot the one point function of (2N)× (2N) antisymmetric matrix X, we have from (C.11),

U(s) =
1

2N

〈

tresX
〉

A
= − 1

Ns

∮

dv

2πi

N
∏

i=1

v2 + a2
i

(v + s
2 )2 + a2

i

(

v + s
2

v + s
4

)

esv+ s2

4 (5.2)

For a N × N real antisymmetric matrix X, the sourceless probability density A = 0,

P (X) =
1

Z
eγtrX2

, Z =

(

π

2γ

)
N(N−1)

4

(5.3)

gives the expectation values

〈XijXkl〉 = − 1

4γ
(δikδjl − δilδjk)

〈

trX2
〉

= −N(N − 1)

4γ

〈

(trX2)2
〉

=
N(N − 1)(N2 − N + 4)

16γ2

〈

trX4
〉

=
N(N − 1)(2N − 1)

16γ2
(5.4)

We have thus to compare

U(s) =
1

N

〈

tresX
〉

= 1 +
s2

2N

〈

trX2
〉

+
s4

4!N

〈

trX4
〉

+ · · · (5.5)

with this integral representation. For instance, in the case of N=1, (and γ = 1/2) the

formula (5.2), after taking the residue at v = − s
2 , leads to

U(s) = e−
s2

4 = 1 − s2

4
+

s4

32
+ · · · (5.6)

which indeed agrees with N = 2 in (5.4),

1

N

〈

trX2
〉

= −(N − 1)

2

∣

∣

∣

N=2
= −1

2
,

1

N

〈

trX4
〉

=
(N − 1)(2N − 1)

4

∣

∣

∣

N=2
=

3

4
(5.7)
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For N = 2, 3, . . ., it is easily verified that the integral representation of U(s) agrees

with (5.4).

In a previous article, we have found an explicit formula giving the zero-replica limit

N → 0 for U(s1, . . . , sn) in the unitary case, in the absence of an external source (A =0) [5].

There it was shown that

lim
N→0

U(s1, . . . , sn) =
1

σ2

n
∏

i=1

2sh
siσ

2
(5.8)

where σ =
n
∑

i=1
si. For n=1, this is simply

lim
N→0

U(s) =
2

s2
sh

s2

2
= 1 +

s4

24
+

s8

5! · 24
+ · · · (5.9)

This means that

lim
N→0

1

N

〈

trM4
〉

= 1. (5.10)

The replica limit counts the numbers of diagrams which can be drawn in one stroke line,

and it corresponds to one marked point for the intersection numbers.

For real antisymmetric matrices X, this replica limit of U(s) is different from the

previous unitary case. From (5.2), we obtain

lim
N→0

U(s) =
2

s

∮

dv

2πi
log
(

1 +
s

2v

)

(

v + s
2

v + s
4

)

esv+ s2

4

=
4

s2
sh

s2

4
+

∫ s2

4

0
dx

shx

x

= 1 +
s2

4
+

s4

96
+

s6

1152
+ · · · (5.11)

The coefficients of s2 and s4, 1
4 and 1

96 , are consistent with (5.5) by (5.4), when we take

γ = 1
2 and N → 0. The term of order s2 is a Möbius band (projective plane), and it is

a typical non-orientable surface. This term comes from the integral of (5.11), which does

not exist in the unitary case.

We obtain the connected part of the two-point correlation, after the shift ui → ui + si
2

in (C.19),

lim
N→0

Ũ(s1, s2) = −e
1
4
(s2

1+s2
2)

∮

du1du2

2πi
es1u1+s2u2

×log

(

1 +
s1

2u1

)

(u1 + s1
2 )(u2 + s2

2 )

[u2
1 − (u2 + s2

2 )2][u2
2 − (u1 + s1

2 )2]
(5.12)

with

U(s1, s2) =
∑

ǫ1,ǫ2=±1

Ũ(ǫ1s1, ǫ2s2). (5.13)
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We deform the contour of u2 near the origin to the poles (i) u2 = u1+ s1
2 , (ii)u2 = −u1− s1

2 ,

(iii)u2 = −u1 − s2
2 ,(iv)u2 = u1 − s2

2 . Then we obtain in the replica limit N → 0,

lim
N→0

Ũ(s1, s2) =
2

(s1 + s2)2
sh

s1

4
(s1 + s2)sh

s2

4
(s1 + s2)

− 2

(s1 − s2)2
sh

s1

4
(s1 − s2)sh

s2

4
(s1 − s2)

+
1

2

∫ s1+s2

s1−s2

dy
1

y
sh

s1y

4
sh

s2y

4
. (5.14)

Since this is invariant under the change of signs of si, we have from (5.13),

lim
N→0

U(s1, s2) = 4 lim
N→0

Ũ(s1, s2). (5.15)

For n > 2 we operate in a similar fashion and obtain the following result which generalizes

the theorem for the unitary case [5]:

Theorem 3.

lim
N→0

U(s1, . . . , sn) =
∑

ǫi=±1

W (ǫ1s1, ǫ2s2, . . . , ǫnsn),

W (s1, . . . , sn) =
1

2σ2

n
∏

i=1

(

4sh
siσ

4

)

+
1

2

∫ σ

0
dy

1

y

n
∏

i=1

sh
siy

4
(5.16)

where σ = s1 + · · · + sn.

6. Intersection numbers from U(s1, . . . , sn)

For one marked point, we consider the evolution operator U(s) in an external source A,

chosen at a critical value. We discuss here the case p=3. From (5.2), by the scalings of

v →
√

Nv, s → s/
√

N , and by the critical value a2
i = N , we have

U(s) = −1

s
e

s2

4N

∮

dv

2πi

(

1 + v2

1 + (v + s
2N )2

)N v + s
2N

v + s
4N

esv (6.1)

Exponentiating the term of power N , we have

−N log

[

1 +
(

v +
s

2N

)2
]

+ N log(1 + v2) + sv +
s2

4N

= v3s +
3

4N
v2s2 +

1

4N2
vs3 +

1

32N3
s4 + · · · (6.2)

The first four terms are of order N after rescaling s → Ns. Further, by the replacement

by s →
√

2s,N → 2N ,v → u/
√

2, we obtain in the large N limit,

U(s) = −e
N
4

s4

Ns

∫

du

2πi
eNsu3+ 3

2
Ns2u2+Ns3u

(

u + s

u + s
2

)

(6.3)
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The shift u → u − s
2 , and u = 1

s1/3 t gives

U(s) = − 1

Ns4/3

∫

dt

2πi
eNt3+ N

4
s8/3t

(

1 +
s4/3

2t

)

. (6.4)

We further make a scale t → −it/(3N)1/3, then we have

U(s) =
1

31/3(Ns)4/3

[

1

π

∫ ∞

0
dtcos

(

t3

3
+ xt

)

− 1

π

s4/3(3N)1/3

2

∫ ∞

0
dt

1

t
sin

(

t3

3
+ xt

)]

. (6.5)

where x = −N2/3s8/3/(4 · 31/3). Using the Airy function Ai(x),

Ai(x) =
1

π

∫ ∞

0
dtcos

(

t3

3
+ xt

)

(6.6)

we obtain

U(s) =
1

31/3(Ns)4/3

(

Ai(x) − s4/3(3N)1/3

2

∫ x

0
dx′Ai(x

′)

)

(6.7)

Since s is a Fourier transform variable, it is proportional to

s ∼ 1

λ3
, x ∼ s8/3 ∼ 1

λ8
(6.8)

The Airy function Ai(x) has asymptotic expansion

Ai(x) = Ai(0)

(

1 +
1

3!
x3 +

1 · 4
6!

x6 + · · · + 1 · 4 · 7
9!

x9 + · · ·
)

+A′
i(0)

(

x +
2

4!
x4 +

2 · 5
7!

x7 +
2 · 5 · 8

10!
x10 + · · ·

)

(6.9)

where Ai(0) = 3−2/3/Γ(2/3) and A′
i(0) = −3−1/3/Γ(1/3).

Therefore, we obtain the intersection numbers from the coefficients of the evolution

operator U(s) for the one marked point like in the previous unitary case [5, 6]. The first

series of expansion of Ai(x) in (6.9)gives the intersection numbers for the spin j = 1, and

the second series gives the intersection numbers for the spin j = 0. From the first term

in (6.7) with (6.9), one finds the intersection numbers 〈τn,j〉g for integer g

〈

τ(8g−5−j)/3,j

〉

g
=

1

(24)gg!

Γ(g+1
3 )

Γ(2−j
3 )

(6.10)

where j = 0 for g = 3l + 1 and j = 1 for g = 3l. The intersection numbers for non ori-

entable surfaces of half-integer genera, are obtained from the second term of (6.7), namely

the integral of the Airy function. Taking into account the normalization (4.5), this leads

to explicit results, such as

〈τ2,1〉g=3/2 =
1

864
.
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7. Conclusion

We have derived the intersection numbers for non-orientable surfaces from generalized

Kontsevich Airy integrals over random antisymmetric matrices, the Lie algebra of the

group SO(2N). An N − k duality bewteen k-point functions in N × N Gaussian matrix

integrals, and N-point functions for k × kintegrals, in the presence of an external matrix

source, allows one to relate those generalized Airy integrals to the edge behavior of Gaus-

sian models. Those Gaussian models are then much easier to deal with than the original

integrals. The existence for Lie algebras of classical groups (such as Hermitian matrices for

U(N) or antisymmetric matrices for O(N)) of an Harish Chandra integral over the group

elements is a key ingredient in these calculations. These techniques should be useful for

characterizing the geometric properties of those non orientable surfaces, and for comparing

zeros of analytic functions to random matrix spectra.
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A. Derivation of theorem 1

Let us begin with the simple case, k=1. The determinant is given by the integral,

〈det(λ · I − X)〉 =

〈
∫

dcadc̄ae
c̄a(λ·I−X)abcb

〉

(A.1)

over the 2N Grassmann variables ca, c̄a. The probability measure P (X) for the average is

P (X) =
1

ZA
e

1
2
trX2+trXA (A.2)

Absorbing the antisymmetric part of the term c̄aXabcb in the external source, A → A′,

with

A′
ab = Aab −

1

2
(c̄acb − c̄bca) (A.3)

We obtain

trA′2 = trA2 − 2Aabc̄bca −
1

2
(c̄aca)(c̄bcb) (A.4)

where a and b run over 1, 2, . . . , N . Writing the term (c̄aca)(c̄bcb) in the exponent as

e−
1
4
(c̄aca)(c̄bcb) =

1√
π

∫

dye−y2+iyc̄c (A.5)

we obtain

〈det(λ · I − X)〉 =
1√
π

∫

dy

∫

dcdc̄e−y2+(λ+iy)c̄aca−Aabc̄bca

=
1√
π

∫

dye−y2
N
∏

j=1

det

(

(λ + iy) · 1 − aj

γ
iσ2

)

=
1√
π

∫

dye−y2
N
∏

j=1

[

(λ + iy)2 − a2
j

]

(A.6)
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where σ2 is the second Pauli matrix. On the other hand for the one-point function the

right-hand side in (2.1) (theorem 1) is an integral over one single real number
〈

N
∏

j=1

det(aj · I − Y )

〉

Λ

=
1

ZΛ

∫ N
∏

j=1

det

(

aj y

−y aj

)

e−y2−2iλy

=
1√
π

e−λ2

∫

dy

N
∏

j=1

(a2
j + y2)e−y2−2iλy. (A.7)

The shift iy → iy + λ shows that (A.6) and (A.7) are identical.

When k ≥ 2 for averaging the k characteristic polynomials, k×2N Grassmann variables

c̄α
a and cα

b are necessary (α = 1, . . . , k ; a, b = 1 · · ·N). As for k = 1, we have

A′
ab = Aab −

1

2
(c̄α

a cα
b − c̄α

b cα
a ) (A.8)

trA′2 = −2Abac̄
α
a cα

b − 1

2
c̄α
a cβ

a c̄β
b cα

b − 1

2
c̄α
a c̄β

acβ
b cα

b (A.9)

The last two terms are replaced by the following integrals,

e−
1
4γ

(c̄α
a cβ

a)(c̄β
b cα

b ) =

∫

dBe−γtrB2+itrBβαc̄α
a cβ

a (A.10)

e
− 1

4γ
(c̄α

a c̄β
a)(cβ

b cα
b )

=

∫

dDdD∗eγtrD∗D+ 1
2
c̄α
a c̄β

aDβα+ 1
2
(D∗)αβcβ

b cα
b (A.11)

where B is a k×k Hermitian matrix and D is a k×k antisymmetric complex matrix. Thus

we obtain,
〈

k
∏

α=1

det(λα − X)

〉

=

∫

dBdDe
−γtrB2+γtrD∗D− 1

γ
Abac̄α

b cα
a

×eλα c̄α
a cα

a+iBαβ c̄β
acα

a + 1
2
Dαβ c̄β

a c̄α
a + 1

2
D∗

αβcβ
acα

a (A.12)

The exponent of this integral is a quadratic form in the Grassmann variables.

Let us first consider the k = 2 case. The exponent is of the form
∑

n Ψt
nMnΨn, where

Ψt
n = (c̄1

2n+1, c̄
1
2n+2, c̄

2
2n+1, c̄

2
2n+2, c

1
2n+1, c

1
2n+2, c

2
2n+1, c

2
2n+2) (A.13)

with the 8 by 8 matrix Mn

Mn =

(

D̃ B̃n

−B̃t
n D̃∗

)

(A.14)

where

D̃ =









0 0 D21 0

0 0 0 D21

−D21 0 0 0

0 −D21 0 0









(A.15)

B̃n =









λ1 + iB11
i
γ an iB21 0

− i
γ an λ1 + iB11 0 iB21

iB12 0 λ2 + iB22
1
γ an

0 iB12 − i
γ an λ2 + iB22









(A.16)
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Since the matrix Mn is antisymmetric, the Gaussian integral over the Ψn is the Paffian:

Pf(Mn) =
[

|D21|2 − (λ1 + iB11)(λ2 + iB22) − |B12|2
]2

+
1

γ2
a2

n

[

− (λ1 + iB11)
2 − (λ2 + iB22)

2 + 2|B12|2 + 2|D21|2
]

+
1

γ4
a4

n (A.17)

Writing B11 = b1, B22 = b2, B12 = b3 + ib4,D = d1 + id2, we define the real antisymmetric

matrix Y as

Y =









0 b1 b4 + d2 b3 + d1

−b1 0 d1 − b3 b4 − d2

−b4 − d2 −d1 + b3 0 b2

−b3 − d1 −b4 + d2 −b2 0









(A.18)

which satisfies the following equation,

det

(

an

γ
· I − Y

)

= Pf(Mn) (A.19)

Since

trY 2 = −2(b2
1 + b2

2) − 4(b2
3 + b2

4 + d2
1 + d2

2)

= −trB2 − trD∗D (A.20)

theorem 1 holds.

For k > 2, the same procedure leads to the expression of an antisymmetric matrix Y, which

is made of block of 2 × 2 matrices, given by

Yij = (ImBij) · I + (iσ1)ReBij + σ1ImDij + σ3ReDij (A.21)

where the σi are the 2 × 2 Pauli matrices.

B. Harish Chandra integral formula of theorem 2

The Weyl group W of the SO(2N) Lie algebra is the permutation group S2N followed by

reflection symmetries yi → ǫiyi (ǫi = ±1), with an even number of ǫi = −1 . Then the sum

over the elements of the Weyl group contained in the numerator of (4.1) becomes

I =
∑

ǫ1=±1,...,ǫN=±1
ǫ1ǫ2···ǫN =1

∑

σ∈SN

(detσ)exp



2

N
∑

j=1

ǫσ(j)yσ(j)λj



 (B.1)

where the sum is restricted to reflections with an even number of sign changes, i.e.

ǫ1ǫ2 · · · ǫN = 1. (B.2)
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Since detσ = (−1)|σ| (in which |σ| is the parity of the permutation), the sum over the N !

elements σ of SN is a determinant. Therefore we obtain

I =
∑

ǫ1=±1,...,ǫN =±1
ǫ1ǫ2···ǫN =1

det
[

e2ǫiyiλj

]

(B.3)

The result in this form is sufficient for the purposes of section 4. But one may go a bit

further. Writing for each matrix element e2ǫiyiλj = cosh (2yiλj) + ǫi sinh (2yiλj) we obtain

a sum of 2N determinants weighted by products of ǫi. The sum over those ǫi, restricted by

the condition (B.2), leads to a cancellation of all the terms except two . The final result is

I = 2N−1(det[cosh(2yiλj)] + det[sinh(2yiλj)]) (B.4)

For instance, for N = 2 the signs are (ǫ1, ǫ2) = (1, 1) or (−1,−1) . The sum over these

terms gives

I = det[e2yiλj ] + det[e−2yiλj ]

= (e2y1λ1+2y2λ2 − e2y1λ2+2y2λ1) + (e−2y1λ1−2y2λ2 − e−2y1λ2−2y2λ1). (B.5)

which is indeed identical to

I = 2(det[cosh(2yiλj)] + det[sinh(2yiλj)]). (B.6)

Let us apply the result (B.3) to the integral (3.5):

Z =

∫

dY e−
1

p+1
trY p+1+trY Λ (B.7)

in which Y runs over the 2N × 2N antisymmetric matrices, the Lie algebra of SO(2N).

One may use the rotational invariance of the measure to write Y = gyg−1 in which g is an

element of SO(2N) and y is a canonical matrix (2.2), namely

y = y1v ⊕ · · · ⊕ yNv, v = iσ2 =

(

0 1

−1 0

)

.

The integral over Y may be replaced by an integral over g and over the yi’s. The Jacobian

is, up to a constant factor, J =
∏

i<j(y
2
i − y2

j )
2. Using the Harish Chandra integral, one

integrates over g and, using the result (B.3), one obtains

Z =
∑

ǫ1=±1,...,ǫN=±1
ǫ1ǫ2···ǫN=1

∫

dy1 · · · dyN

∏

(y2
i − y2

j )
∏

(λ2
i − λ2

j )
e−

2
p+1

PN
1 yp+1

i det[e2ǫiyiλj ]. (B.8)

Since p is odd, one can change ǫiyi → yi. The antisymmetry of
∏

(y2
i − y2

j ) under permu-

tations allows one to replace the determinant by its diagonal term exp(2
∑

yiλi) (up to a

factor N !). The restricted sum over the ǫi is simply the factor 2N−1. We are thus led to

the integral (4.2) of section 4.
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C. Integral representations for U(s1, . . . , sn)

For real antisymmetric matrices, the support of the density of states ρ(λ) is the imaginary

axis,

ρ(λ) =
1

N
〈trδ(λ − X)〉 . (C.1)

and it is an even function of λ. The Fourier transform of ρ(λ) is U(t),

U(t) =

∫

dλeitλρ(λ)

=
1

N

〈

treitX
〉

. (C.2)

Through an orthogonal transformation g (g ∈ SO(2N)), one can bring the matrix X to

the canonical form

X = x1v ⊕ · · · ⊕ xNv, v = iσ2 =

(

0 1

−1 0

)

. (C.3)

from which one has

tresX = 2
N
∑

i=1

cos(sxi) (C.4)

From theorem 2, the evolution operator U(s) becomes

U(s) =
1

N

N
∑

α=1

∫

∏

i

dxicos(sxα)
∆(x2

j )

∆(a2
j )

e−
P

x2
i +2

P

ajxj (C.5)

If we write cos(sxα) = Re(eisxα) the integral amounts to an integral over antisymmetric

matrices with the shifted source aj → ãj = aj + 1
2 isδj,α. Then the integrals over the xi’s

are just the normalization for Gaussian antisymmetric matrices in the source Ã:

∫

dXe
1
2
TrX2+TrÃX = e−

1
2
TrÃ2

. (C.6)

Indeed using again the Harish Chandra theorem, the left-hand side is simply

∫

dXe
1
2
TrX2+TrÃX =

∫

∏

i

dxi

∆(x2
j)

∆(ã2
j)

e−
P

x2
i +2

P

ãjxj (C.7)

which provides the result that we need:

∫

∏

i

dxi∆(x2
j )e

−
P

x2
i +2

P

ajxj+isxα =
∆(ã2

j )

∆(a2
j )

e−
1
2
TrÃ2+ 1

2
TrA2

. (C.8)

This leads to

U(s) =
1

2N

N
∑

α=1

N
∏

γ 6=α

(

(aα + is
2 )2 − a2

γ

a2
α − a2

γ

)

eisaα−
s2

4 + (s → −s). (C.9)
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The normalization is such that U(0) = 1. It is useful to express (C.9) as a contour integral,

U(s) =
1

Ns

∮

du

2πi

N
∏

γ=1

(

(u + is
2 )2 − a2

γ

u2 − a2
γ

)

u

iu − s
4

eius− s2

4 (C.10)

where the contour encircles the poles u = aγ .

Changing variables, u + is
2 = −iv, one obtains U(s)

U(s) = − 1

Ns

∮

dv

2πi

N
∏

n=1

(

v2 + a2
n

(v + s
2 )2 + a2

n

)

v + s
2

v + s
4

evs+ s2

4 , (C.11)

which is the representation that we have used in (5.2).

The two-point correlation function U(s1, s2) is given by Th.2,

U(s1, s2) =
1

2N

〈

tres1Xtres2X
〉

=
2

N

N
∑

α1,α2=1

∫ N
∏

i=1

dxicos(s1xα1)cos(s2xα2)
∆(x2)

∆(a2)
e−

P

x2
i +2

P

ajxj . (C.12)

We make replacements of cos(isixαi) by 1
2eisixαi , (i = 1, 2) in (C.12), and we name it as

Ũ(s1, s2). Then, we have

U(s1, s2) =
∑

ǫ1,ǫ2=±1

Ũ(ǫ1s1, ǫ2s2). (C.13)

The sum in (C.12) is devided into two parts,
∑

α1=α2
and

∑

α1 6=α2
. The first part can be

neglected. By the double contour integrals, the double sum is expressed as

Ũ(s1, s2) =
1

2Ns1s2

∮

dudv

(2πi)2

N
∏

γ=1

(

(u + is1
2 )2 − a2

γ

u2 − a2
γ

)(

(v + is2
2 )2 − a2

γ

v2 − a2
γ

)

(C.14)

× uv

(iu − s1
4 )(iv − s2

4 )

[(u + is1
2 )2 − (v + is2

2 )2](u2 − v2)

[(u + is1
2 )2 − v2][u2 − (v + is2

2 )2]
eius1+ivs2−

1
4
(s2

1+s2
2)

By the Cauchy determinant identity,

det
1

x2
i − y2

j

= (−1)n(n−1)/2

∏

i<j(x
2
i − x2

j)(y
2
i − y2

j )
∏

i,j(x
2
i − y2

j )
(C.15)

with xi = ui + isi
2 , yi = ui, above expression is simplified as

Ũ(s1, s2) =
1

2N
e−

1
4
(s2

1+s2
2)

∮

dui

(2πi)2
e

P

isiui

2
∏

i=1

ui

×
N
∏

γ=1

2
∏

i=1

(

(ui + isi
2 )2 − a2

γ

u2
i − a2

γ

)

det
1

(ui + isi
2 )2 − u2

j

(C.16)
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For general n, we have similarly,

Ũ(s1, . . . , sn) =
1

2N
e−

1
4

P

s2
i

∮ N
∏

i=1

dui

2πi
e

P

isiui

n
∏

i=1

ui

×
N
∏

γ=1

n
∏

i=1

(

(ui + isi
2 )2 − a2

γ

u2
i − a2

γ

)

det
1

(ui + isi
2 )2 − u2

j

. (C.17)

with

U(s1, . . . , sn) =
∑

ǫi=±1

Ũ(ǫ1s1, . . . , ǫnsn). (C.18)

This expression reduces to the previous one in (C.10) for n=1. We need the connected part

of U(s1, . . . , sn), which is easily obtained from the expression of the determinant in (C.17).

For n=2, we obtain by the change ui → −iui,

Ũc(s1, s2) =
1

2N
e−

1
4
(s2

1+s2
2)

∮

dui

(2πi)2
e

P

siui

×
N
∏

γ=1

2
∏

i=1

(

(ui − si
2 )2 + a2

γ

u2
i + a2

γ

)

u1u2

[(u1 − s1
2 )2 − u2

2][(u2 − s2
2 )2 − u2

1]
(C.19)

This is the representation that we have used in (5.12).
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[15] E. Brézin and S. Hikami, New correlation functions for random matrices and integrals over

supergroups, J. Phys. A 36 (2003) 711 [math-ph/0208001].

[16] Harish Chandra, Invariant differential operators on a semisimple Lie algebra, Proc. Nat.

Acad. Sci. 42 (1956) 252.

– 18 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB380%2C168
http://arxiv.org/abs/hep-th/9112069
http://arxiv.org/abs/math-ph/9910005
http://arxiv.org/abs/cond-mat/9902037
http://arxiv.org/abs/math-ph/0103012
http://arxiv.org/abs/math-ph/0208001

